

White Paper: Advanced WordPress Site Speed
Optimizations

Having your WordPress site run as fast as possible is important for growing your
business.

When each page loads fast, site visitors are more likely to stay and look around instead
of leaving. They are more likely to convert into customers.

This detailed White Paper has advanced techniques for speeding up your WordPress
websites. Many of these action items may require a web developer. Most of them
require you to have full access to your web server and database (not just your
WordPress admin).

Table Of Contents

Introduction

Types of Sites: Static or Dynamic
Types of Hosting

1: Server Optimizations

1:1 Caching
1:2 CDN
1:3 GZIP Compression | Add a “Vary: Accept-Encoding” Header
1:4 Clean Up and Optimize Your Database
1:5 Increase PHP Workers
1:6 Enable Hotlink Protection
1:7 Minimize Redirects and Add Them at the Server-Level
1:8 Manage and Minimize Cron Jobs
1:9 Add Cache-Control and Expires Headers (Determine Cache Length)
1:10 Add Last-Modified and ETag Headers (Validate Cache)
1:11 Changing the WordPress Memory Limit in wp-config.php
1:12 Use Cookie-Free Domains
1:13 Use Prefetch and Preconnect

2: WordPress Backend Optimizations

2:1 Change Your WordPress Login URL
2:2 Create a Light 404 Page
2:3 Disable or Tweak Plugin and Theme Updates
2:4 Understanding Your Theme’s Impact and Sample Speed Tests
2:5 Disable Pingbacks
2:6 Limit Posts on Your Blog Feed
2:7 Delete and Limit Page and Post Revisions
2:8 Offload Media From Your WordPress Site
2:9 Offload Email From Your WordPress Site
2:10 Use Redis as a Persistent Object Cache for WordPress
2:11 Use Elasticsearch to Speed Up WordPress Search
2:12 Disable Non-Critical Features That Are Database-Intensive
2:13 Use the Free Query Monitor Plugin
2:14 Utilize Staging Sites Without Touching Production
2:15 Check Your Error Logs
2:16 Disable Embeds in WordPress
2:17 Disable Emojis in WordPress

2:18 How to Speed Up WordPress Comments or Disable Them
2:19 Disable WordPress RSS Feeds
2:20 Use MyKinsta Analytics

3: Frontend Optimizations

3:1 Eliminate Render-Blocking JavaScript and CSS
3:2 Combine External CSS and JavaScript in WordPress
3:3 Lazy Loading
3:4 Additional Image Optimization Tips
3:5 Mobile Optimizations
3:6 Disable Scripts on a Per Page/Post Basis
3:7 Analyzing Third-Party Performance

Appendix: Your Site Could Be Slow Because It’s Been Quietly Hacked

Introduction

Types of Sites: Static or Dynamic

Before we dive into the optimizations, it’s important first to understand that not all
WordPress sites are the same. This is why a lot of users have problems, as
you can’t go about tackling every issue the same way. It helps to give your
WordPress site/s a classification: static or dynamic.

Static Sites

Static would typically include sites such as blogs, small business sites, lower
volume news sites, personal, photography, etc. By static, we mean that the data
on these WordPress sites is not changing very often (perhaps a couple of
times a day).

This becomes incredibly important as many of the requests can be served
directly from cache on the server at lightning-fast speeds! Don’t worry; we’ll dive
into the topic of caching in length further below. This means they will have fewer
database calls and not as many resources will be needed to achieve good
performance.

Dynamic Sites

On the other side, we have highly dynamic sites. These include sites such as
eCommerce (WooCommerce or Easy Digital Downloads), community,
membership, forums (bbPress or BuddyPress) and learning management
systems (LMS). By dynamic, we mean that the data on these WordPress sites is
frequently changing (server transactions are taking place every few minutes or
even every few seconds). This means that not all requests to the server can be
served directly from cache and require additional server resources and database
queries.

These sites also typically have a large number of concurrent visitors and
sessions. On an informational or corporate WordPress site which is mostly

static, a visitor might stay for five or 10 minutes until they find what they need. On
dynamic sites, you have the opposite happening. Visitors typically come to the
site to engage with something or someone. If they’re going through an online
course, it’s not unusual for them to stay for hours.

Static sites may need less resources, optimizations, and customization
than dynamic sites.

Types of Hosting

A WordPress host is a company that stores all of your website’s data. You sign
up for a plan and all your images, content, etc., reside on a server sitting in the
host’s data center. The WordPress host gives you an easy way to access the
data, manage it, and route it to your visitors. Pretty simple right? Well, not quite.

There are very different types of WordPress hosts you’ll encounter around the
web. Let’s dive into the pros and cons of each. It’s important you choose the right
one from the beginning, otherwise, you’ll simply cause yourself headaches and
wasted time down the road.

1. Shared WordPress Hosting

The first and very popular type of WordPress hosting is what most people call
“shared hosting.” These include companies like Bluehost and HostGator as well
as providers like Siteground, GoDaddy, and InMotion Hosting. They typically
utilize cPanel, and the average customer usually pays between $3 to $25 a
month. Pay close attention to the pricing, shared hosting often offers ‘get you in
the door’ cheaper pricing during the first year (or few months) and doubles after
that.

Anyone using this type of hosting will almost certainly, at some point, experience
slow performance. It’s probably just a matter of time. Why? Because shared
hosts share your server with other sites. This in turn can (or eventually will)
impact the performance of your site. Site suspensions or seeing frequent 500
errors are common things you’ll experience as they have to place limits on

https://kinsta.com/knowledgebase/what-is-cpanel/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

everything and consolidate resources to survive. Or even worse, you’ll
experience website downtime. Even though you don’t know it, your WordPress
site is most likely sitting on the same server as 200+ other people. Any issues
that pop up with other sites can trickle over into your site.

No matter how you do the math, after expenses, $3-25 a month isn’t generating
any revenue for the hosting company. Especially when you attribute support into
that. One support ticket and they’re already in the red. The way they make a lot
of their money is on upselling and hidden fees. These upsells include things like
migrations, domain registrations, SSL certificates, etc. Another common tactic, as
we said, is to provide huge signup discounts. But once the renewal comes
around, you get the bigger bill.

Most of these hosts offer what they call their “unlimited resources” plan. You have
probably seen this. Well, there is no such thing in the real world as unlimited
resources. What hosts do behind the scenes is throttle the clients using up a lot
of the resources. This, in turn, ends up with those angry clients leaving, making
room for more clients that don’t use a lot of resources. In the end, you have a
vicious cycle of the hosting company pushing cheap plans and signing up
customers who they hope won’t use a lot of resources and will purchase upsells.

https://kinsta.com/blog/website-downtime/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Customer service and support with shared hosting is almost always subpar due
to the sheer volume of sites vs. support representatives. Shared hosts have to
spread themselves very thin to even make a profit and this usually leads to an
unpleasant experience for the client.

“When it comes to shared hosting, you usually get what you pay
for.”

Make sure to check out an in-depth article from our CFO on the shocking truths
behind how cheap WordPress hosting really works.

2. Dedicated or VPS WordPress Hosting

The second type of WordPress hosting is Dedicated or VPS (virtual private
server). You aren’t sharing server resources with this type of hosting. But it can
be a bit DIY (do it yourself). This type of hosting is typically used by bootstrap
startups and users with more development, server management, and WordPress
skills.

With Dedicated or VPS you get to configure your own server, but you also need
the technical know-how to choose the optimal resources, settings, and
configurations. If something goes wrong, the tech support doesn’t help you with
your app (which is WordPress in this case).

The customizable, yet DIY approach, can cut costs, but it also means that you
are responsible if something breaks and for optimizing your server for
performance. Dedicated and VPS can also backfire on you if you aren’t careful.
Don’t go this route if you aren’t tech-savvy or just because you want to tinker!
Your time is worth money and we recommend spending it on growing your
business.

3. Managed WordPress Hosting

The third type of hosting is managed hosting. These types of hosts handle all the
back-end server related tasks for you, along with providing expert support when

https://kinsta.com/blog/cheap-wordpress-hosting/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

you need it. They typically fine-tune your server environment to work with
WordPress and usually include features such as one-click staging environments
and automatic backups. Their support teams will be more knowledgeable when it
comes to your app (WordPress) since that is their daily focus.

If you want to save time and focus on growing your business,
managed WordPress hosting is the way to go!

Plans for managed WordPress hosting typically range anywhere from $30 to
$150 a month or more depending on the size of your site and needs.

Kinsta Takes a Different Approach

Kinsta takes managed WordPress hosting to the next level. Our hosting platform
doesn’t quite fit into any of the traditional hosting categories. Our entire
infrastructure is built on Google Cloud Platform (GCP) and is different from
traditional shared, VPS, or dedicated infrastructure.

Every WordPress site on our platform runs in an isolated software container that
contains all of the software resources required to run the site (Linux, NGINX,
PHP, MySQL/MariaDB). This means that the software that runs each site is
completely private and is not shared, even between your own sites.

Each site container runs on virtual machines in one of our multiple GCP data
centers. Each machine has up to 96 CPUs and hundreds of GB of RAM.
Hardware resources (RAM/CPU) are allocated to each site container
automatically by our virtual machines on an as-needed basis.

Read this article to learn what makes Kinsta different if you want to learn more.
No matter who your WordPress host is, the tips in this whitepaper can help you
get your website to run as fast as possible.

1: Server Optimizations
The optimizations described below require a lot of technical skill. In many cases your
web host controls this, and they may not grant you access to the controls.

The sections below will either show you how to make optimizations to your site, teach
you how to ask your technical support team the right questions, or can help you decide
if you want to migrate your site to another host that manages these things for you.

1:1 Caching

https://kinsta.com/why-us/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Caching is by far one of the most important and easiest ways to speed up
WordPress! But before we show you how to use caching, it’s essential first to
understand how it works and the different kinds of caching available.

What is Caching?

In short, every web page visited on your WordPress site requires a request to the
server, processing by that server (including database queries), and then a final
result sent from the server to the user’s web browser.

For instance, you might have a header, images, a menu, and a blog post. Since
the server has to process all of those requests, it takes some time for the
complete web page to be delivered to the user, especially with clunky or larger
websites.

That’s where a WordPress caching plugin comes into play! Caching instructs the
server to store some files to disk or RAM, depending on the configuration.
Therefore, it can remember and duplicate the same content it’s been serving in
the past. Basically, it reduces the amount of work required to generate a page
view. As a result, your web pages load much faster, directly from cache.

Some other benefits of caching include:

● Your server uses fewer resources – This ties into speed, since fewer
resources used make for a faster site. However, it also puts less of a strain
on your server. This is very important when it comes to highly dynamic
sites, such as membership sites, and determining what you can and
cannot serve from cache.

● You’ll see lower Time to First Byte (TTFB) – Caching is one of the
easiest ways to lower your TTFB. In fact, in our tests caching typically
reduces TTFB by up to 90%!

Types of Caching

When it comes to types of caching, there are several different approaches
commonly used:

https://kinsta.com/blog/wordpress-caching?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/hosting-wordpress-membership-sites/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/ttfb/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

1. Caching at the Server-Level
2. Caching with a Plugin
3. Edge Caching

1. Caching at the Server-Level

This type of caching is by far one of the easiest approaches for the end-user.
What this means is that the WordPress hosting provider handles it for you. At
Kinsta, we utilize the following four types of server-level cache, which are all
automatically done for you.

● Bytecode cache
● Object cache
● Page cache
● CDN cache

This means you don’t need to worry about messing with any complicated and
confusing caching plugins. You can stop Googling around for the “best caching
plugins” and focus on more productive tasks.

The page cache is configured to work right out of the box with standard
WordPress. You don’t have to do a thing! Simply launch your WordPress site and
page caching will start happening.

Some web hosts, Kinsta included, also have caching rules in place for
ecommerce sites such as WooCommerce and Easy Digital Downloads. By
default, certain pages that should never be cached, such as cart, my-account,
and checkout, are excluded from caching.

Users automatically bypass the cache when the woocommerce_items_in_cart
cookie or edd_items_in_cart are detected to ensure a smooth and in-sync
checkout process.

You can easily clear your WordPress site’s cache at any time from the admin
toolbar.

https://kinsta.com/blog/wordpress-cache/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#bytecode-cache
https://kinsta.com/blog/wordpress-cache/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#object-cache
https://kinsta.com/blog/wordpress-cache/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#page-cache
https://kinsta.com/blog/wordpress-cache/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#cdn-cache
https://kinsta.com/blog/wordpress-caching-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/clear-wordpress-cache/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

It’s also integrated into our MyKinsta dashboard. Just click into Tools > Site
Cache and click on Clear cache.

2. Caching with a Plugin

If your hosting provider doesn’t provide caching, you can use a third-party
WordPress caching plugin. Based on our experience, we recommend one of the
following:

● WP Rocket (premium)
● Cache Enabler (free)
● W3 Total Cache (free)

You can also check out some additional options in our in-depth post on
WordPress caching plugins.

https://kinsta.com/blog/wp-rocket/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/wordpress-caching-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#cache-enabler
https://kinsta.com/blog/wordpress-caching-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#w3-total-cache
https://kinsta.com/blog/wordpress-caching-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

At Kinsta, in addition to our server-level caching, we also fully support WP
Rocket. We usually don’t allow caching plugins in our environment because they
conflict with our built-in caching solution. However, as of WP Rocket 3.0, their
page caching functionality will automatically be disabled when running on Kinsta
servers. This allows Kinsta clients to use our fast server-level caching but still
take advantage of the fantastic optimization features WP Rocket has to offer.

3. Edge Caching

Edge Caching is a newer type of caching technology. It stores your often-updated
HTML text content as close as possible to your visitors “on the edge”, or on a
global network of servers. Edge Caching requires advanced functionality that
dynamically updates the HTML content and replicates it all over the world
anytime it’s changed.

It would be very difficult to build this yourself. Instead, you should use a service
like Cloudflare with their extensive network of Edge Servers. Ideally, your web
host will provide this service integrated into their servers due to the difficulty in
setting it up.

● Read this article to learn more about Edge Caching

No Caching vs. Caching

How much does caching help? The proof is in the pudding.

We ran a few speed tests with Kinsta’s server-level caching so you can see the
difference it makes, both in terms of overall speed and TTFB.

No Caching

We first ran five tests on Pingdom without caching enabled and took the average.

https://kinsta.com/blog/wp-rocket/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/wp-rocket/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://www.cloudflare.com/learning/cdn/glossary/edge-server/
https://kinsta.com/blog/edge-caching/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

No Caching TTFB

It’s also important to note the difference in TTFB without and with caching. TTFB
in Pingdom is represented by the yellow “waiting” bar. As you can see the TTFB
with no caching is 192 ms. You can see that it’s not serving from cache as the
x-kinsta-cache header is showing a MISS.

With Caching Enabled

We then enabled server-level caching and ran five tests on Pingdom and took the
average.

As you can see server-level caching decreased our page load time by
33.77%! And that’s without any extra work involved. This site we tested is also
fairly optimized, so larger unoptimized sites are bound to see even greater
differences.

TTFB with Caching Enabled

Now if we take a look at the TTFB with caching enabled, we can see that it’s
under 35 ms. You can see that it’s serving from cache as the x-kinsta-cache
header is showing a HIT.

CDN cache is also equally as important as cache from your WordPress host.
We’ll dive more into CDNs further below.

WordPress caching can easily decrease your page load times by
over 33%!

Issues with Caching and Membership Sites

Membership sites contain a lot of uncacheable content and pages that are
continuously changing. Things such as the login page for community members
(which could be getting hit constantly depending on the size of the site), checkout
pages for digital goods or courses, and discussion boards are common culprits
and pain points, as these cannot typically be cached.

However, it doesn’t end there. On standard WordPress sites, the WordPress
dashboard is also not cached for “logged-in” users. This is fine when you have
just a few authors and admins, but when you suddenly have thousands of
members using the dashboard, this immediately causes performance issues as
none of it can serve from the cache on the server. This means you need the
power and architecture behind the scenes to back it up. Shared hosting providers
will usually cripple under these circumstances.

Object Caching for Highly Dynamic Sites

When it comes to WordPress membership sites, your common caching setups
are usually not enough as they don’t always take full advantage of it. This is
where object caching comes into play.

Object cache stores the results of database queries so that the next time that
particular bit of data is needed it can be delivered from cache without querying
the database. This speeds up PHP execution times and reduces the load on your
database. This becomes extremely important with membership sites! With
WordPress, you can implement object caching in a couple of different ways:

1. A third-party caching solution such as W3 Total Cache
2. Redis (recommended)
3. Memcached

https://kinsta.com/blog/wordpress-caching-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#w3-total-cache
https://memcached.org/

We offer Redis as an add-on at Kinsta so you can take full advantage of
persistent object caching for your membership sites.

1:2 CDN

CDN is short for content delivery network. This is a network of servers located
around the earth, each one called a point-of-presence, or PoP. They are
designed to host and deliver copies of your WordPress site’s static (and
sometimes dynamic) content such as images, CSS, JavaScript, and video
streams.

First off, you don’t want to get a CDN confused with your WordPress host. These
are entirely separate services. A CDN isn’t a replacement for your hosting
provider, but rather an additional way to increase the speed of your site.

How a CDN Works

How does a CDN work exactly? Well, for example, when you host your website
with Kinsta you have to choose a physical data center location, such as the USA,
Europe, Asia-Pacific, or South America.

Let’s say you choose US Central. This means your website is physically located
on a “host server” in Council Bluffs, Iowa. When people over in Europe visit your
website it is going to take longer for it to load versus someone visiting it from say
Dallas, TX.

Why? Because the data has to travel a further distance. This is what is known as
latency. Latency refers to the time and or delay that is involved in the
transmission of data over a network. The further the distance the greater the
latency.

A CDN lets you store certain assets, like CSS, Javascript files, and images closer
to the user on a global network of servers. This makes sites load faster for users
all over the world.

https://kinsta.com/knowledgebase/redis-cache/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/wordpress-cdn/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/google-cloud-data-center-locations/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/network-latency/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Types of CDNs

There are two different main types of content delivery networks:

1. Traditional Pull CDN
2. Reverse Proxy CDN

Traditional pull CDNs cache a copy of all of your content and media, but a
request from the client is still made directly to your hosting provider. KeyCDN and
CDN77 are examples of traditional CDNs.

A reverse proxy CDN is slightly different. While it still acts like a CDN, it
intercepts all incoming requests and acts as an intermediary server between the
client and your host. Cloudflare and Sucuri are examples of reverse proxy CDNs.
This is one reason why you have to point your DNS directly to these providers
instead of your host.

The benefit of these is because they act as an intermediary server, they can
provide strong web application firewalls which can help block the bad traffic from
ever hitting your WordPress site and or hosting provider. One downfall to this is
that they do come with a little additional overhead in terms of performance
compared to a traditional pull CDN. But with additional performance and security
features, this could be argued as negligible.

https://www.keycdn.com/
https://www.cdn77.com/
https://www.cloudflare.com/
https://sucuri.net/

CDN Speed Tests

Earlier we talked about the huge benefits of WordPress caching. Well, CDN
caching is also super powerful. This is because CDNs typically have a lot more
server locations than hosting providers. This means they can cache all of your
assets (images, JS, CSS) closer to your visitors and serve them up at
lightning-fast speeds.

Let’s do a few quick tests to see just how much faster your site could be with a
CDN.

Without CDN

Our test website is hosted at Kinsta and is physically located at the Iowa, USA
data center. We first ran five speed tests in Pingdom (without the CDN enabled),
and took the average. Important: We are using the Europe – United Kingdom –
London location at Pingdom to demonstrate the real power of a CDN. The total
load time was 1.03 sms.

With CDN

We then enabled our CDN and ran five additional speed tests in Pingdom. Our
total load time is now 585 ms from the Europe – United Kingdom – London
Pingdom test location. So by using the CDN, we were able to decrease our
page load times by 43.2%! That is huge.

The reason for such a drastic difference is because the CDN has a data center in
London. This means all the assets are cached in that location and ready to be
served with minimal latency.

TTFB without CDN

Remember that the yellow bar in Pingdom stands for wait time, which is time to
first byte (TTFB). On our speed tests without the CDN running the average TTFB
on assets was around 98 ms.

TTFB with CDN

Once we enabled the CDN, the average TTFB on assets dropped to an average
of 15 ms. So by using a CDN our average TTFB dropped by 84.69%. This is
primarily because the assets were being served directly from the CDN’s cache.

A CDN decreased our page load times by 43.2%! Check out why
you should be using one.

How to Enable a CDN

Enabling a CDN on your WordPress site doesn’t have to be hard, it’s quite easy!
Just follow these steps.

Step 1

Select a CDN provider and subscribe to their service. These are typically billed
on a monthly basis or by data usage. Most providers will have a calculator to
estimate your costs.

● If you are looking into deploying KeyCDN yourself, we recommend reading
this article on CDN for dummies. Each CDN provider should also have
documentation to help you get started.

● We have in-depth tutorials on how to install Cloudflare and how to install
Sucuri.

Step 2

If you’re using a traditional pull CDN, you can utilize a free plugin like CDN
Enabler, WP Rocket, or Perfmatters to integrate it with your WordPress site.
These plugins automatically link up your assets to the CDN. There is no work
needed on your part to get your content on the CDN; this is all hands-off!

Reverse Proxy CDNs typically don’t require any plugins, although sometimes
they have them to enable additional features.

https://woorkup.com/cdn-for-dummies/
https://kinsta.com/knowledgebase/install-cloudflare/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/sucuri-firewall/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/sucuri-firewall/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wordpress.org/plugins/cdn-enabler/
https://wordpress.org/plugins/cdn-enabler/
https://wp-rocket.me/
https://perfmatters.io/?utm_medium=kinsta-ebook&utm_source=whitepaper&utm_campaign=gated-assets&utm_content=hello-there-brian&utm_term=from-joe-wells

How to Use CDN

Did you like the numbers in those CDN speed tests above? Use a CDN yourself!

● Learn more about CDNs
● Learn how to set up a Cloudflare CDN
● Learn how to set up a Sucuri CDN

At Kinsta we include a powerful CDN which is enabled by default, learn more
about it here.

Additional CDN Optimizations

Here are a few additional CDN optimizations you might want to check out or think
about.

● If you have a lot of comments, gravatars can generate a lot of requests.
They load from secure.gravatar.com. Check out this tutorial on how to load
gravatars from your CDN instead. We do this on the Kinsta website.

https://kinsta.com/knowledgebase/what-is-a-cdn/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/install-cloudflare/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/sucuri-firewall/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/docs/kinsta-cdn?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/docs/kinsta-cdn?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://woorkup.com/load-gravatars-from-cdn/
https://woorkup.com/load-gravatars-from-cdn/

● You can host your custom web fonts from your CDN or even Google fonts
on your CDN. Check out our in-depth tutorial on local fonts.

● Make sure to load your favicon from your CDN. Even though it’s small,
every request counts!

1:3 GZIP Compression | Add a “Vary: Accept-Encoding” Header

The vary: Accept-Encoding header should be included on every origin server
response, as it tells the browser whether or not the client can handle compressed
versions of the content. If this isn’t properly set, you might see a warning that you
need to “Specify a Vary: Accept-Encoding Header.”

For example, let’s say you have an old browser without gzip compression and a
modern browser with it. If you don’t utilize the vary: Accept-Encoding header your
web server or CDN could cache the uncompressed version and deliver that to
the modern browser by mistake, which in turn hurts the performance of your
WordPress site. By using the header you can ensure that your web server and or
CDN delivers the appropriate version.

Kinsta automatically adds the above headers on all server requests, and if you’re
using a CDN, they will most likely add these headers for you as well. Just like
with the other cache headers we’ve discussed above, you can’t manually set this
header on external resources.

https://kinsta.com/blog/local-fonts/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-favicon/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/specify-vary-accept-encoding-header/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/enable-gzip-compression/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Add Vary: Accept-Encoding Header in Apache

You can add the vary: Accept-Encoding header in Apache by adding the
following to your .htaccess file.

<IfModule mod_headers.c>
<FilesMatch ".(js|css|xml|gz|html)$">
Header append Vary: Accept-Encoding
</FilesMatch>
</IfModule>

Add Vary: Accept-Encoding Header in Nginx

You can add the vary: Accept-Encoding header in Nginx by adding the following
code to your config file. All Nginx configuration files are located in the /etc/nginx/
directory. The primary configuration file is /etc/nginx/nginx.conf.

gzip_vary on

1:4 Clean Up and Optimize Your Database

Next up are some tips on how to fine-tune your WordPress database. Just like a
car your database needs upkeep as over time it can become bloated.

Membership sites especially make it tricky, as they usually generate more
complex queries, which in turn adds additional latency in retrieving the
information from the MySQL database. A lot of this is due to all the additional
moving parts and large amounts of data sites like these have. This might also be
caused by sites that heavily rely on search queries for navigation or use
WP_Query.

Not to mention, you also have large amounts of concurrent users continuously
querying the database.

1:4.1 Use the InnoDB MySQL Storage Engine

A lot of older sites are still using the MyISAM storage engine in their database.
Over recent years, InnoDB has shown to perform better and be more reliable.

Here are a couple of advantages of InnoDB over MyISAM:

● InnoDB has row-level locking. MyISAM only has full table-level locking.
This allows your queries to process faster.

● InnoDB has what is called referential integrity which involves supporting
foreign keys (RDBMS) and relationship constraints, MyISAM does not
(DMBS).

● InnoDB supports transactions, which means you can commit and roll
back. MyISAM does not.

● InnoDB is more reliable as it uses transactional logs for auto recovery.
MyISAM does not.

So now you might be wondering, are you running InnoDB or MyISAM? If you are
running on a fairly new WordPress site chances are you are already using the
InnoDB MySQL storage engine. But with older WordPress sites you might want
to do a quick check. Some sites might even have mixed and matched MyISAM
and InnoDB tables, in which you could see improvements by converting them all
over.

Follow these simple steps below to check.

Step 1

Login to phpMyAdmin and click on your MySQL database.

Step 2

Do a quick scan or sort of the “Type” column, and you can see which Storage
Engine types your tables are using. In this example below, you can see that two
of the tables are still using MyISAM.

http://dimitrik.free.fr/blog/archives/2015/12/mysql-performance-revisiting-innodb-vs-myisam-with-mysql-57.html
https://kinsta.com/blog/install-phpmyadmin?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

If you found some, then it’s probably time to move them to InnoDB. We always
recommend reaching out to your host and asking if they can do this for you. At
Kinsta, every client’s database tables automatically get converted to InnoDB by
our migration team.

But you can always follow these tutorials below to convert your MyISAM tables to
InnoDB manually:

● Convert MyISAM to InnoDB with phpMyAdmin
● Convert MyISAM to InnoDB with WP-CLI

1:4.2 Clean up Your wp_options Table and Autoloaded Data

The wp_options table often gets overlooked when it comes to overall WordPress
and database performance. Especially on older and large sites, this can easily be
the culprit for slow query times on your site due to autoloaded data that is left
behind from third-party plugins and themes. Trust us; we see this every single
day!

The wp_options table contains all sorts of data for your WordPress site such as:

● Site URL, home URL, admin email, default category, posts per page, time
format, etc

● Settings for plugins, themes, widgets

https://kinsta.com/knowledgebase/convert-myisam-to-innodb/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#convert-myisam-innodb-phpmyadmin
https://guides.wp-bullet.com/converting-wordpress-database-tables-from-myisam-to-innodb-with-wp-cli/?utm_source=ebook&utm_content=english
https://kinsta.com/knowledgebase/wp-options-autoloaded-data/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

● Temporarily cached data

This table contains the following fields (columns):

● option_id
● option_name
● option_value
● autoload (this is the one we care about when it comes to performance)

One of the important things to understand about the wp_options table is the
autoload field. This contains a yes or a no value (flag). This essentially controls
whether or not it is loaded by the wp_load_alloptions() function. Autoloaded data
is data that is loaded on every page of your WordPress site. Just like we
showed you how to disable certain scripts from loading sitewide, the same idea
applies here. The autoload attribute is set to “yes” by default for developers, but
not every plugin should theoretically load their data on every page.

The problem WordPress sites can run into is when there is a large amount of
autoloaded data in the wp_options table. This is typically a result of the following:

● Data is being autoloaded by a plugin when it should be set to “no.” A good
example of this would be a contact form plugin. Does it need to load data
on every page or just the contact page?

● Plugins or themes have been removed from the WordPress site, but their
options are still left behind in the wp_options table. This could mean
unnecessary autoloaded data is getting queried on each request.

● Plugin and theme developers are loading data into the wp_options table
instead of utilizing their own tables. There are arguments to both sides of
this, as some developers prefer plugins that don’t create additional tables.
However, the wp_options table also wasn’t designed to hold thousands of
rows.

How much is too much-autoloaded data? This can vary of course, but ideally, you
want this to be between 300 KB to 1MB. Once you start approaching the 3-5 MB
range or more, there are most likely things that can be optimized or removed
from being autoloaded. And anything above 10 MB should be addressed right
away. This doesn’t always mean it’s going to cause an issue, but it’s a good
place to start.

Because this is such a problem we have a whole separate tutorial you’ll want to
read on how to best troubleshoot autoloaded data as well as how to clean it up.

1:4.3 Clean up Transients

Unless you’re using an object cache, WordPress stores transient records in the
wp_options table. Typically these are given an expiration time and should

https://codex.wordpress.org/Function_Reference/wp_load_alloptions
https://kinsta.com/blog/disable-wordpress-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wp-options-autoloaded-data/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#troubleshooting-autoloaded-data

disappear over time. However, that is not always the case. We have seen some
databases where there are thousands of old transient records. In fact, on one
site, we dealt with some corrupt transient records in which over 695,000 rows
were generated in the wp_options table. Yikes!

It’s also important to note that transients are not auto-loaded by default. You
could use a query like the below to see if there are any autoloaded transient
data.

SELECT *
FROM `wp_options`
WHERE `autoload` = 'yes'
AND `option_name` LIKE '%transient%'

A better and safer option would be to utilize a free plugin like Transient Cleaner
or Delete Expired Transients which can clean up only the expired transients from
your wp_options table. However, it appears there is now a function in WordPress,
added in 4.9, that cleans up expired transients. So hopefully that is happening
automatically on your site now.

WP Rocket also has the ability to cleanup transients in their database
optimization options.

https://kinsta.com/blog/debugging-wordpress-performance/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wordpress.org/plugins/artiss-transient-cleaner/
https://wordpress.org/plugins/delete-expired-transients/
https://github.com/WordPress/WordPress/blob/master/wp-includes/option.php#L840

1:4.4 Clean up WordPress Sessions

Another common issue we’ve seen is sometimes cron jobs get out of sync or
don’t fire properly, and therefore sessions don’t get cleaned up. You can wind up
getting tons of _wp_session_ rows in your database. In this example below the
site in question wound up with over 3 million rows in their wp_options table. And
the table had grown to over 600 MB in size.

You could use a query like the one below to see if you’re running into this issue:

SELECT *
FROM `wp_options`
WHERE `option_name` LIKE '_wp_session_%'

In most cases you can then safely delete these (as a cron job should have) with
the following command:

DELETE FROM `wp_options`
WHERE `option_name` LIKE '_wp_session_%'

After cleaning up all the leftover _wp_session_ rows the table had less than
1,000 rows and was reduced to 11 MB in size.

It also fixed the spikes the site was getting in MySQL.

1:4.5 Clean Up Old WordPress Plugins Data

One big issue with WordPress plugins is the uninstall process. Whenever you
install a WordPress plugin or theme, it stores the data in the database. The
problem is that when you delete a plugin using one of the standard methods, it
typically leaves behind tables and rows in your database. Over time this can add
up to a lot of data and even begin to slow your site down. In our example, we
uninstalled the Wordfence security plugin, and it left behind 24 tables in our
database (as seen below). It’s even worse if they’re behind data in your
wp_options table.

https://kinsta.com/blog/uninstall-wordpress-plugin/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

And besides the database, a lot of plugins also leave behind additional folders
and files. In our experience, this is commonly seen with security and caching
plugins which create additional directories for logging. For example, after the
Wordfence plugin was deleted, we were left with a “wflogs” folder in our
wp-content directory. And we aren’t trying to pick on Wordfence, the majority of
plugins and themes on the market work this way.

1:4.6 Add an Index to Autoload

If cleaning up your wp_options table wasn’t enough, you could try adding an
“index” to the autoload field. This essentially can help it to be searched more
efficiently. The awesome team over at 10up performed some test scenarios on a
wp_options table with a typical number of autoloaded records to show how
adding an autoload index to wp_options queries can boost performance.

https://10up.com/blog/2017/wp-options-table/

Image source: 10up

We also recommend checking out these two additional resources from WP
Bullet:

● How to Add MySQL Index to wp_options table
● Cleaning up the wp_options table using WP-CLI

1:5 Increase PHP Workers

PHP workers might be a term you’ve never heard of, but they are how many
hosts, including Kinsta, handle limiting requests (rather than limiting you by CPU
or RAM, which is typically what shared hosting providers do).

PHP workers determine how many simultaneous requests your site can
handle at a given time. To put it simply, each uncached request for your website
is handled by a PHP Worker. For example, if you have 4 requests that come to
your site at the exact same time and your site has 2 PHP workers, two of those

https://guides.wp-bullet.com/add-mysql-index-wordpress-wp_options-table/
https://guides.wp-bullet.com/using-wp-cli-doctor-command-to-fix-large-wp_options-autoload-data/
https://kinsta.com/knowledgebase/php-workers/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

requests will get processed while the other two will have to wait in the queue until
the first two have finished processing.

Remember we discussed earlier that one of the biggest problems with
WordPress membership sites is all of those uncached requests. This is why PHP
workers become very important as they have to do work for each request.
Therefore, these sites will typically require additional PHP workers to ensure
every request is processed without delays and completed successfully.

What happens if you continuously max out your PHP workers? Basically, the
queue starts to push out older requests which could result in 500 errors on your
site.

● Learn more about PHP Workers

1:6 Enable Hotlink Protection

The concept of hotlinking is pretty straightforward. You find an image on the
internet somewhere and use the URL of the image directly on your site. This
image will be displayed on your website but it will be served from the original
location. This is very convenient for the hotlinker, but it’s actually theft as it is
using the hotlinked site’s resources. It’s like if we were to get in our car and drive
away with gas we siphoned off from our neighbor’s car.

Hotlinking can be a huge drain on resources for the target server. Imagine if
you are on a shared WordPress host and Huffington Post suddenly links to your
images. You could go from a couple hundred queries an hour on your site to a
couple hundred thousand. This could even result in a suspension of your hosting
account. This is a reason to not only use a high-performance host (which can
handle hiccups like this), but also to enable hotlink protection, so this doesn’t
happen.

● Check out our tutorial on how to prevent hotlinking.

1:7 Minimize Redirects and Add Them at the Server-Level

https://kinsta.com/blog/php-workers/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/hotlinking/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#prevent-hotlinking

Too many redirects are always something you need to watch out for. Simple
redirects like a single 301 redirect, HTTP to HTTPS, or www to non-www (vice
versa) are fine. And a lot of times these are needed in certain areas of your
website. However, each has a cost on your site’s performance. And if you start
stacking redirects on top of each other, it’s important to realize how they impact
your site. This applies to page and post redirects, image redirects, everything.

A redirect will generate a 301 or 302 on the response header status.

Using free WordPress plugins to implement redirects can sometimes cause
performance issues as most of them utilize the wp_redirect function, which
requires additional code execution and resources. Some of them also add
autoloaded data to your wp_options table, which increases database bloat.
Adding them at the server-level is where they should be done.

We allow you to do that at MyKinsta with our redirect rules tool.

https://developer.wordpress.org/reference/functions/wp_redirect/
https://kinsta.com/knowledgebase/redirect-rules/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

You can also see a complete breakdown of how many redirects are happening
on your sites in our MyKinsta analytics tool. See the total number of 301’s, 302’s,
and 304’s.

Check out our in-depth post on WordPress redirects, and the best practices for
faster performance.

1:8 Manage and Minimize Cron Jobs

CRON jobs (WP-Cron) are used to schedule repetitive tasks for your WordPress
site. However, over time, these can get out of control and cause performance
issues. You can use the free WP Control plugin to check a handle on all the Cron
jobs happening on your site.

We have also seen performance issues with the WordPress built-in Cron handler:
WP-Cron. If a site doesn’t have enough PHP workers, sometimes a request will
come in, WordPress will spawn the cron, but the cron has to wait for the worker,
and therefore just sits there. A better approach is to disable WP-Cron and use

https://kinsta.com/blog/wordpress-redirect/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-cron-job/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wordpress.org/plugins/wp-crontrol/
https://kinsta.com/knowledgebase/disable-wp-cron/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

the system cron instead. This is even recommended in the official Plugin
handbook.

To disable WP-Cron, add the following to your wp-config.php file, just before the
line that says “That’s all, step editing! Happy blogging.” Note: This disables it
from running on page load, not when you call it directly via wp-cron.php.

define('DISABLE_WP_CRON', true);

1:9 Add Cache-Control and Expires Headers (Determine Cache
Length)

Every script on your WordPress site needs to have an HTTP cache header
attached to it (or it should). This determines when the cache on the file
expires. To fix this, ensure your WordPress host has the proper cache-control
headers and expires headers setup. If you don’t, you will most likely see
warnings about needing to add Expires Headers or leverage browser caching in
speed testing tools.

While the cache-control header turns on client-side caching and sets the
max-age of a resource, the expires header is used to specify a specific point in
time the resource is no longer valid. While both the headers can be used

https://developer.wordpress.org/plugins/cron/hooking-wp-cron-into-the-system-task-scheduler/
https://developer.wordpress.org/plugins/cron/hooking-wp-cron-into-the-system-task-scheduler/
https://devcenter.heroku.com/articles/increasing-application-performance-with-http-cache-headers#http-cache-headers
https://kinsta.com/blog/leverage-browser-caching/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

together, you don’t necessarily need to add both of the headers. cache-control is
newer and usually the recommended method.

Kinsta automatically adds HTTP cache headers on all server requests, and if
you’re using a CDN, they will most likely add these headers for you as well.

If your server is missing these headers, you can manually add them.

Adding Cache-Control Header in Nginx

You can add cache-control headers in Nginx by adding the following to your
server config’s server location or block.

location ~* \.(js|css|png|jpg|jpeg|gif|svg|ico)$ {
expires 30d;
add_header Cache-Control "public, no-transform";
}

Adding Expires Header in Nginx

You can add expires headers in Nginx by adding the following to your server
block. In this example, you can see how to specify different expire times based
on file types.

location ~* \.(jpg|jpeg|gif|png|svg)$ {

expires 365d;
}

location ~* \.(pdf|css|html|js|swf)$ {
expires 2d;

}

Adding Cache-Control Header in Apache

You can add cache-control headers in Apache by adding the following to your
.htaccess file. Snippets of code can be added at the top or bottom of the file
(before # BEGIN WordPress or after # END WordPress).

<filesMatch ".(ico|pdf|flv|jpg|jpeg|png|gif|svg|js|css|swf)$">
Header set Cache-Control "max-age=84600, public"
</filesMatch>

Adding Expires Header in Apache

You can add expires headers in Apache by adding the following to your .htaccess
file.

EXPIRES HEADER CACHING
<IfModule mod_expires.c>
ExpiresActive On
ExpiresByType image/jpg "access 1 year"
ExpiresByType image/jpeg "access 1 year"
ExpiresByType image/gif "access 1 year"
ExpiresByType image/png "access 1 year"
ExpiresByType image/svg "access 1 year"
ExpiresByType text/css "access 1 month"
ExpiresByType application/pdf "access 1 month"
ExpiresByType application/javascript "access 1 month"
ExpiresByType application/x-javascript "access 1 month"
ExpiresByType application/x-shockwave-flash "access 1 month"
ExpiresByType image/x-icon "access 1 year"
ExpiresDefault "access 2 days"

https://kinsta.com/knowledgebase/what-is-apache?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

</IfModule>
EXPIRES HEADER CACHING

It’s also important to note that you can only add HTTP cache headers on
resources on your server. If you’re getting a warning about that perhaps you
need to leverage browser caching on a third-party request, there is nothing you
can do, as you don’t have control over their server. Common culprits include the
Google Analytics script and marketing pixels, like Facebook and Twitter.

If you’re trying to fix this with the Google Analytics script, you can host it locally or
on your CDN (although this isn’t officially supported) with a plugin like
Perfmatters or WP Rocket.

1:10 Add Last-Modified and ETag Headers (Validate Cache)

Next, we have another two sets of headers, last-modified and etag.

While the cache-control and expires headers help the browser determine if the
file has changed since the last time it was requested (or rather they validate the
cache). The last-modified and etag headers both validate and set the length of
the cache and should be included on every origin server response. If these
aren’t properly set you might see a warning that you need to “Specify a cache
validator.”

https://perfmatters.io/?utm_medium=kinsta-ebook&utm_source=whitepaper&utm_campaign=gated-assets&utm_content=hello-there-brian&utm_term=from-joe-wells
https://kinsta.com/blog/wp-rocket/?utm_source=ebook&utm_content=english&utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/specify-a-cache-validator/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/specify-a-cache-validator/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

If the headers aren’t found, it will generate a new request for the resource every
time, which increases the load on your server. Utilizing caching headers ensures
that subsequent requests don’t have to be loaded from the server, thus saving
bandwidth and improving performance for the user.

Kinsta automatically adds the above headers on all server requests, and if you’re
using a CDN, they will most likely add these headers for you as well. Just like
with cache-control and expires, you can’t manually set these HTTP headers on
external resources.

Last-Modified Header

The last-modified header is generally sent automatically from the server. This is
one header you generally won’t need to add manually. It is sent to see if the
file in the browser’s cache has been modified since the last time it was
requested. You can look at the header request in Pingdom or use Chrome
DevTools to see the value of the last-modified header.

ETag Header

The ETag header is also very similar to the last-modified header. It is also used
to validate the cache of a file. If you’re running Apache 2.4 or higher, the ETag
header is already automatically added using the FileETag directive. And as far as
NGINX goes, the ETag header has been enabled by default since 2016.

You can enable the ETag header manually in Nginx using the following code.

etag on

1:11 Changing the WordPress Memory Limit in wp-config.php

As stated in the WordPress DevHub, with WordPress Version 2.5, the
WP_MEMORY_LIMIT option allows you to specify the maximum amount of
memory that can be consumed by PHP. This setting may be necessary in the

http://httpd.apache.org/docs/current/mod/core.html#fileetag
http://nginx.org/en/docs/http/ngx_http_core_module.html#etag
https://wordpress.org/documentation/article/editing-wp-config-php/

event you receive a message such as “Allowed memory size of xxxxxx bytes
exhausted”.

By default, WordPress will attempt to increase the memory allocated to PHP to
40MB for a single site and 64MB for multisite. They define the memory limits in
the file ./wp-includes/default-constants.php, on lines 32 – 44 (source).

You then also have PHP memory_limit on the server by your hosting provider.
These are two different things. At Kinsta we set the default memory_limit to
256M. If you’re running into the memory size exhausted error you can try
increasing the PHP memory limit in WordPress.

Add the following to your wp-config.php file, just before the line that says “That’s
all, stop editing! Happy blogging.”

define('WP_MEMORY_LIMIT', '256M');

Jan Reilink also has a great blog post which describes the WordPress memory
limit issue in more detail. He also gives a variation on the code you could use.
Instead of setting the amount manually, you can set it to the PHP memory_limit
value.

define('WP_MEMORY_LIMIT', ini_get('memory_limit'));

1:12 Use Cookie-Free Domains

Generally, when you are serving content such as images, JavaScript, CSS, there
is no reason for an HTTP cookie to accompany it, as it creates additional
overhead. Once the server sets a cookie for a particular domain, all subsequent
HTTP requests for that domain must include the cookie. This warning is typically
seen on sites with a large number of requests.

We have an in-depth post on how to deal with the ”Serve static content from a
cookieless domain” warning.

https://github.com/WordPress/WordPress/blob/master/wp-includes/default-constants.php
https://kinsta.com/blog/wp-config-php/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://www.saotn.org/set-wp_memory_limit-value-correctly-in-wp-config-php/
https://www.saotn.org/set-wp_memory_limit-value-correctly-in-wp-config-php/
https://en.wikipedia.org/wiki/HTTP_cookie
https://kinsta.com/knowledgebase/serve-static-content-from-a-cookieless-domain/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/serve-static-content-from-a-cookieless-domain/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

If you’re running Cloudflare, you can’t disable cookies on resources served
through their network. CloudFlare includes their own security cookie in your
header. Again these cookies are very small and the performance implications are
extremely minimal. But if you use CloudFlare, there is no way to get around this
warning.

A second way to get around this is to re-configure your WordPress site to deliver
the static assets from a new domain or subdomain.

1:13 Use Prefetch and Preconnect

Resource hints and directives such as prefetch and preconnect can be a great
way to speed up WordPress behind the scenes. KeyCDN has an excellent article
and overview of resource hints.

Prefetch

DNS prefetch allows you to resolve domain names (perform a DNS lookup in the
background) before a user clicks on a link, which in turn can help improve
performance. It’s done by adding a rel=”dns-prefetch” tag in the header of your
WordPress site.

<link rel="dns-prefetch" href="//domain.com">

Some common things to use DNS prefetching for is your CDN URL, Google
fonts, Google Analytics, etc.

https://support.cloudflare.com/hc/en-us/articles/200169816-Can-I-serve-a-cookieless-domain-or-subdomain-through-CloudFlare-
https://kinsta.com/knowledgebase/serve-static-content-from-a-cookieless-domain/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#re-configure-wordpress-site
https://www.keycdn.com/blog/resource-hints
https://html.spec.whatwg.org/#link-type-dns-prefetch

<link rel="dns-prefetch" href="//cdn.domain.com/">
<link rel="dns-prefetch" href="//fonts.googleapis.com/">
<link rel="dns-prefetch" href="//www.google-analytics.com">

Prefetch is also supported by most modern browsers. Check out our tutorial on
how to add code to your WordPress header.

Or you can easily implement DNS prefetch using a plugin like Perfmatters.
Simply click on the “Extras” tab in the Perfmatters plugin and add domains.
Format: //domain.tld (one per line)

Preconnect

Preconnect allows the browser to set up early connections before an HTTP
request, eliminating round-trip latency and saving time for users.

http://caniuse.com/#search=dns-prefetch
https://kinsta.com/knowledgebase/add-code-wordpress-header-footer/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://www.w3.org/TR/resource-hints/#preconnect

Preconnect is an important tool in your optimization toolbox… it
can eliminate many costly roundtrips from your request path –
in some cases reducing the request latency by hundreds and
even thousands of milliseconds. – lya Grigorik (source)

It’s done by adding a rel=”preconnect” tag in the header of your WordPress site.

<link rel="preconnect" href="//domain.com">

A few examples of things you might want to utilize this for include your CDN URL
or Google Fonts.

<link rel="preconnect" href="https://cdn.domain.com">
<link rel="preconnect" href="https://fonts.gstatic.com">

Preconnect is supported by most modern browsers, with the exception of Internet
Explorer, Safari, IOS Safari, and Opera Mini. There are a couple ways to
implement this.

Preconnect is supported by most modern browsers, with the exception of Internet
Explorer, Safari, IOS Safari, and Opera Mini. Check out our tutorial on how to
add code to your WordPress header.

Or you can easily implement preconnect using a plugin like Perfmatters. Simply
click on the “Extras” tab in the Perfmatters plugin and add domains. Format:
scheme://domain.tld (one per line).

https://www.igvita.com/2015/08/17/eliminating-roundtrips-with-preconnect/
https://caniuse.com/#search=preconnect
https://kinsta.com/knowledgebase/add-code-wordpress-header-footer/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

2: WordPress Settings and Optimizations
Now to move on to optimal WordPress settings. Here are actions you can take to
help speed up your WordPress site. Many of these are very subtle changes, but
everything really adds (or subtracts) up!

2:1 Change Your WordPress Login URL

By default your WordPress site’s login URL is domain.com/wp-admin/. One of the
problems with this is that all of the bots, hackers, and scripts out there also know
this. By changing the URL, you can make yourself less of a target, better protect
yourself against brute force attacks, and decrease the bandwidth used by the
bots that hit this URL repeatedly.

Changing your WordPress login URL can also help prevent common errors like
“429 Too Many Requests.” This is not a fix all solution, it’s merely one little trick
that can help protect you and decrease the load on that page.

To change your WordPress login URL we recommend using one of the following
plugins:

● WPS Hide Login (free)
● Perfmatters (premium, but includes other performance optimization

settings)

https://kinsta.com/blog/wordpress-login-url/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#change-login-page
https://wordpress.org/plugins/wps-hide-login/
https://perfmatters.io/?utm_medium=kinsta-ebook&utm_source=whitepaper&utm_campaign=gated-assets&utm_content=hello-there-brian&utm_term=from-joe-wells

2:2 Create a Light 404 Page

We’ve seen first-hand that highly dynamic sites typically generate a lot of 404
errors. Your website might be generating more than you think!

The reason these errors are bad is that many 404 pages are very resource
intensive. For a highly dynamic WordPress site, you’ll want to avoid a heavy 404
page. Create a simple 404 template that avoids querying the database any
further if possible. And of course, spend some time and fix the 404 errors as this
is not only resource intensive, it’s simply bad for the user experience.

2:3 Understanding Your Theme’s Impact and Sample Speed Tests

Every theme mentioned below is fully compatible with WooCommerce and Easy
Digital Downloads, WPML, BuddyPress, and bbPress. We run a few speed tests
with each theme using the following configuration:

● Hosted on Kinsta, running WordPress 5.0
● SSL (HTTPS)
● Kinsta CDN
● Imagify was used to automatically compress images.

GeneratePress

GeneratePress is a fast, lightweight, mobile responsive WordPress theme built
with speed, SEO and usability in mind. Built by Tom Usborne, a developer from
Canada. It is actively updated and well supported. Even a few Kinsta team
members use GeneratePress for their projects.

There is both a free and premium version available. If you take a look at the
WordPress repository, the free version currently has over 600,000 active installs
and an impressive 5 out of 5-star rating (over 850 people have given it 5 stars).

https://codex.wordpress.org/Creating_an_Error_404_Page?utm_source=ebook&utm_content=english
https://imagify.io/
https://generatepress.com/
https://wordpress.org/themes/generatepress/

One of the great things about GeneratePress is that all the options use the native
WordPress Customizer, meaning you can see every change you make instantly
before pressing the publish button. This also means you don’t have to learn a
new theme control panel.

Just how fast is it? We did a fresh install of GeneratePress, ran five speed tests
in Pingdom, and took the average. The total load time was 305 ms with a total
page size of only 16.8 KB. It’s always good to have a baseline test to see what
the theme is capable of in terms of raw performance.

We then ran another set of tests with one of the pre-built themes from the
GeneratePress site library. This contains images, backgrounds, new sections,
etc. One advantage GeneratePress has is that it has a lot of pre-built themes that
don’t require a page builder plugin. You can see that it’s still clocked under 400
ms.

Now of course, in a real-world environment you might have other things running
such as Google Analytics, Facebook remarketing pixel, Hotjar, etc. But you
should be able to aim for under the 1-second mark easily.

OceanWP

The OceanWP theme is lightweight and highly extendable. It enables you to
create almost any type of website, such as a blog, portfolio, business website or
WooCommerce storefront with a beautiful & professional design. Built by Nicolas
Lecocq, it is also actively updated and well supported.

Just like with GeneratePress, there is both a free and premium version available.
If you take a look at the WordPress repository, the free version currently has over
700,000 active installs, and another impressive 5 out of 5-star rating.

Just how fast is it? We did a fresh install of OceanWP, ran five speed tests in
Pingdom, and took the average. The total load time was 389 ms with a total
page size of only 230.8 KB. The scripts in OceanWP are slightly larger, but
nothing to write home about.

We then ran another set of tests with one of the demo themes from the
OceanWP site library. This contains images, backgrounds, new sections, and
requires the Elementor page builder plugin. You can see that it’s still clocked
under 600 ms.

https://oceanwp.org/
https://wordpress.org/themes/oceanwp/

You can check out a more in-depth review of OceanWP on our blog.

Astra

Astra is a fast, fully customizable & beautiful theme suitable for blogs, personal
portfolios, business websites, and WooCommerce storefronts. It is very
lightweight (less than 50 KB on frontend) and offers unparalleled speed. Built by
the team at Brainstorm Force, it is actively updated and well supported. You
might recognize them as the creators of the popular All In One Schema Rich
Snippets plugin which has been around for many years.

Just like with GeneratePress and OceanWP, there is both a free and premium
version available. If you take a look at the WordPress repository, the free version
currently has over 1 million active installs and 5-star rating.

Just how fast is it? We did a fresh install of Astra, ran five speed tests in
Pingdom, and took the average. The total load time was 243 ms with a total
page size of only 26.6 KB.

https://kinsta.com/blog/oceanwp/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wpastra.com/
https://wordpress.org/themes/astra/

We then ran another set of tests with one of the demo themes from the Astra
Starter kit site library. This contains images, backgrounds, new sections, and
requires the Elementor page builder plugin. You can see that it’s still clocked
under 700 ms. Note: the images in this demo were fully compressed, but they
chose very high-resolution ones from the start.

It’s important to take the differences between the speed tests with these three
themes with a grain of salt. The problem is that it’s almost impossible to run a
completely accurate side by side comparison. The important thing we wanted to
show you is that all of these WordPress themes are blazing fast, both out of the
box and full demos!

2:5 Disable Pingbacks

A pingback is an automated comment that gets created when another blog links
to you. There can also be self-pingbacks which are created when you link to an
article within your own blog.

We recommend simply disabling these as they generate worthless queries and
additional spam on your site. Remember, the less calls your WordPress site has
to make the better, especially on high-traffic sites. Not to mention the fact that a
pingback on your own website is just downright annoying. Follow the steps below
to disable pingbacks.

Step 1 – Disable Pingbacks From Other Blogs

In your WordPress dashboard, click into “Settings → Discussion.” Under the
Discussion Settings section uncheck the option “Allow link notifications from
other blogs (pingbacks and trackbacks) on new articles.”

Step 2 – Disable Self-Pingbacks

When it comes to disabling self-pingbacks you have a couple of options. You can
use the free No Self Pings plugin. Or you can use a premium plugin like
Perfmatters.

https://kinsta.com/knowledgebase/what-is-a-pingback/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-admin/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wordpress.org/plugins/no-self-ping/
https://perfmatters.io/?utm_medium=kinsta-ebook&utm_source=whitepaper&utm_campaign=gated-assets&utm_content=hello-there-brian&utm_term=from-joe-wells

Alternatively, you could also disable self-pingbacks by adding the following code
to your WordPress theme’s functions.php file. Warning, editing the source of a
WordPress theme could break your site if not done correctly. Tip, you can easily
add PHP snippets like this with the free Code Snippets plugin. This means you
never have to touch your theme.

function wpsites_disable_self_pingbacks(&$links) {
foreach ($links as $l => $link)

if (0 === strpos($link, get_option('home')))
unset($links[$l]);

}

add_action('pre_ping', 'wpsites_disable_self_pingbacks');

2:6 Limit Posts on Your Blog Feed

Whether your blog feed is set as your homepage or is another page of your site,
you don’t need 50 thumbnails all loading at the same time. For those that run
high-traffic blogs, your homepage is the most important page of your site, and
you want this to load fast. The fewer requests and media the better in terms of
performance.

https://wordpress.org/plugins/code-snippets/

Also, this is precisely why pagination was invented (as seen below). Pagination is
what you see at the end of blog feeds that allow you to browse to the next page.
Typically these are numbers,or they might use “next/previous” posts. Your
WordPress theme will most likely already have customized pagination built-in.

WordPress by default sets the limit on fresh WordPress installations to 10. Make
sure to double check what value you’re using. We recommend somewhere
between 8 and 12.

You can find this option in your WordPress admin dashboard under “Settings →
Reading.” You can then change the value for “Blog pages show at most.”

2:7 Delete and Limit Page and Post Revisions

Whenever you save a page or post in WordPress, it creates what is called a
revision. This occurs in both drafts and already published posts that are updated.
Revisions can be helpful in case you need to revert to a previous version of your
content.

https://wordpress.org/support/article/revisions/

However, revisions can also hurt the performance of your WordPress site. On
large sites, this can add up very quickly to thousands of rows in your database
which are not necessarily needed. And the more rows you have, the larger your
database in size, which takes up storage space. While indexes were created for
this very purpose, we’ve still seen this issue cripple WordPress sites. There are a
couple of things you can do.

1. Delete Old Revisions

If you have an older WordPress site with a lot of pages and posts, it might be
time to do a quick cleanup and delete those old revisions. You can do this with
MySQL, but with all the bad snippets of code floating around the web, we
recommend doing a backup of your site and using a free plugin like WP-Sweep.

Another one of our favorite plugins, WP Rocket, also has a database optimization
feature to clear out revisions.

https://kinsta.com/blog/disk-usage-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wordpress.org/plugins/wp-sweep/
https://kinsta.com/blog/wp-rocket/?utm_source=ebook&utm_content=english&utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

If you’re handy with WP-CLI, there’s a couple of commands you can use for this.

Login to your server via SSH and run the following command to get and see the
number of revisions currently in the database.

wp revisions list

https://kinsta.com/blog/connect-via-ssh/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

If you get an error, you might need to first install the wp-revisions-cli package with
the following command:

wp package install trepmal/wp-revisions-cli

You can then run the following command to clean up the revisions:

wp revisions clean

2. Limit Revisions

Another good strategy and one that we use at Kinsta is to limit the number of
revisions that can be stored per post or page. Even setting it to something like
ten will keep revisions from getting out of hand, especially if you do a lot of
updating.

To limit revisions, you can add the following code to your wp-config.php file. The
code below needs to be inserted above the ‘ABSPATH’ otherwise it won’t work.
You can change the number to however many revisions you want to keep stored
in your database.

define('WP_POST_REVISIONS', 10);

https://github.com/trepmal/wp-revisions-cli
https://kinsta.com/knowledgebase/wordpress-revisions/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-revisions/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Or you can utilize a premium plugin like Perfmatters to limit revisions.

2:8 Offload Media From Your WordPress Site

Everything that generates an HTTP Request has an impact on your site’s
performance. For sites hosting hundreds of thousands of images, videos, or
other large media, it may be wise to offload this completely.

Offloading is different from serving it up via a CDN. With a CDN the original
data still resides at your host, the CDN makes copies of it and stores it closer to
your visitors.

When caching expires on your CDN assets it queries your host again for the
latest copies of the files. CDNs are meant to cache files for long periods of time.
But due to the fact that they have so many POPs, there could be a lot of
re-querying going on as cache expires in different regions.

When you offload media or files it means actually moving the original physical
location of them off of your hosting provider. So while it might appear that the files
are served from your site, they are really located somewhere else entirely.
Besides reducing additional queries back to the host, the number one reason
obviously is to also save on disk space.

Offload Media to Amazon S3

One of the most popular offloading solutions is Amazon S3. Amazon S3 is a
storage solution, and part of Amazon Web Services many products. Typically this
is used for large sites that either need additional backups or are serving up large
files (downloads, software, videos, games, audio files, PDFs, etc.). Amazon has
a proven track record of being very reliable, and because of their massive
infrastructure, they can offer very low storage costs. Some of S3’s customers
include Netflix, Airbnb, SmugMug, Nasdaq, etc.

https://aws.amazon.com/s3/
https://kinsta.com/knowledgebase/pdf-mp3-hosting/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/pdf-mp3-hosting/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Because they deal entirely with bulk storage, you can almost guarantee that
pricing will be cheaper than your WordPress host. Offloading media to AWS can
be a great way to save money and is free for your first year (up to 5 GB storage).
Also, because the requests for your media are served directly from Amazon, this
puts less load on your WordPress site, meaning faster load times.

Check out our in-depth tutorial on how to offload WordPress media to Amazon
S3. You can also use a CDN with the offloaded media for the best of both worlds.

Offload Media to Google Cloud Storage

Another popular offloading solution is Google Cloud Storage. Since Kinsta is
powered by Google Cloud Platform, we are big fans of their technology and
infrastructure. Due to Google’s massive infrastructure and the fact that they deal
with storage in bulk, they can offer very low storage costs. Some of their
customers include Spotify, Vimeo, Coca-Cola, Philips, Evernote, and Motorola.

Check out our in-depth tutorial on how to offload WordPress media to Google
Cloud Storage.

2:9 Offload Email From Your WordPress Site

Similar to offloading media (above) if you are sending a lot of transactional or
marketing emails, it may be best for your use case to have all that work happen
off your main WordPress site.

https://kinsta.com/knowledgebase/wordpress-amazon-s3/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-amazon-s3/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://cloud.google.com/storage/
https://kinsta.com/knowledgebase/wordpress-google-cloud-storage/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-google-cloud-storage/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Offload Transactional and Marketing Emails

Whether you think so or not, emails do have an impact on your server and server
resources. With some hosts, especially shared hosts, abusing this could even get
you suspended. This especially becomes a problem with those trying to send
bulk emails. This is the reason why third-party transactional email providers exist
and why a lot of hosting providers block email delivery on standard ports
altogether. We never recommend using your hosting provider for email.

If you are sending newsletters or bulk emails, we always recommend the
following alternatives to get the best results:

● Use a third-party professional email marketing software that isn’t part
of WordPress

● Use a transactional email service provider (HTTP API or SMTP) along
with WordPress

Other advantages of using a third-party service include:

● Better email deliverability. Let the email providers do what they do best!
● Less chance to get blacklisted.
● It might not always be possible to set up DMARC records with your hosting

provider.

Email Marketing Tools

Some examples of marketing emails include newsletters, product and feature
announcements, sales, event invitations, onboarding reminders, etc. Here are a
few email marketing tools we recommend:

● MailChimp
● MailerLite
● Drip

Transactional Email Services

https://kinsta.com/blog/email-marketing-software/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://mailchimp.com/
https://www.mailerlite.com/
https://www.drip.com/

Some examples of transactional emails include purchase receipts from
WooCommerce or EDD, account creation notifications, shipping notifications, app
error messages, password resets, etc. If you’re a Kinsta client, we rely on a
third-party SMTP provider to ensure high deliverability. But depending on your
volume, we always recommend moving this offsite. Here are a few transaction
email services we recommend:

● SendGrid
○ Learn how to configure SendGrid in WordPress.

● Mailgun
○ Learn how to configure Mailgun in WordPress.

● SparkPost

2:10 Use In-Memory Data Storage for WordPress

Redis and Memcahced are open-source, in-memory data structure stores. In the
context of WordPress, Redis can be used to store the values generated by
WordPress’ native object cache persistently so that cached objects can be
reused between page loads.

Using a persistent object cache such as Redis allows for the reuse of cached
objects rather than requiring the MySQL database to be queried a second time
for the same object. The result is that Redis can reduce the load on a website’s
MySQL database, simultaneously decreasing the response time of the site and
increasing the site’s ability to scale and handle additional traffic.

Highly dynamic websites (WooCommerce, Easy Digital Downloads, membership
sites, forums, discussion boards, and blogs with extremely active comment
systems) often can’t make good use of page caching are potential candidates for
a persistent object caching option such as Redis.

https://sendgrid.com/
https://kinsta.com/knowledgebase/sendgrid-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://www.mailgun.com/
https://kinsta.com/knowledgebase/mailgun-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://www.sparkpost.com/
https://redis.io/topics/introduction
https://memcached.org/
https://codex.wordpress.org/Class_Reference/WP_Object_Cache

● Read our article comparing Redis and Memcached
● If you’re a Kinsta client, we offer a Redis add-on, check out how to add

Redis to your hosting plan.

2:11 Use Elasticsearch to Speed Up WordPress Search

Elasticsearch is an open-source full-text search engine. It is used to index data
and search that data incredibly quickly.

In the context of WordPress, Elasticsearch can be used to speed up querying
of the WordPress database. This is done by building an index of the content of
your site’s database and then using Elasticsearch to search this index much
more quickly than a MySQL query is capable of performing the same search.

If you have the time and ability, Elasticsearch can be integrated with a
WordPress site by a highly knowledgeable WordPress and Elasticsearch
developer. If your site makes relatively standard use of WP_Query, Elasticsearch
can also be integrated by installing ElasticPress, a free WordPress plugin from
10up, available on WordPress.org, which automatically integrates with the
WP_Query object to generate query results with Elasticsearch rather than
MySQL.

Any site that makes heavy use of WP_Query can benefit from Elasticsearch.
Examples of sites that can benefit from Elasticsearch:

● Sites where search is the primary means of navigation.
● WooCommerce sites with a huge number of orders where site admins

need to be able to search the list of orders regularly.
● Any site with a large number of posts where MySQL queries are producing

unacceptably slow results.

Just like with Redis, we also have an Elasticsearch add-on. Check out how to
add Elasticsearch to your hosting plan.

2:12 Disable Non-Critical Features That Are Database-Intensive

https://kinsta.com/blog/memcached-vs-redis/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/redis-cache/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#add-redis-kinsta
https://kinsta.com/knowledgebase/redis-cache/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#add-redis-kinsta
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://www.elasticpress.io/
https://wordpress.org/plugins/elasticpress/
https://github.com/10up/ElasticPress#how-does-it-work
https://github.com/10up/ElasticPress#how-does-it-work
https://developer.wordpress.org/reference/classes/wp_query/
https://kinsta.com/knowledgebase/wordpress-elasticsearch/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#add-elasticsearch-kinsta
https://kinsta.com/knowledgebase/wordpress-elasticsearch/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#add-elasticsearch-kinsta

This might seem a little obvious, but it can make a world of difference if you
disable non-critical plugins and theme features that are database-intensive.

● Popular and or related post widgets and plugins are horrible. They typically
have heavy sitewide queries.

● Image optimization plugins that compress images using your server. You
should always use an image optimization plugin that optimizes images
externally.

We also recommend staying away from plugins that add a view/post counter to
your site, unless you absolutely need it. For example, avoid things like “792
posts” next to a user’s avatar in forum posts or “5,243 views” when listing forum
posts. When you have a long discussion, these counters will take a huge toll on
your database. In general, minimize the use of counters and only use them if
necessary.

This also goes for a lot of social counters. For example, on this site below you
can see the response time from the popular Social Warfare plugin is 30x more
than the next plugin below it. Caching is enabled, but obviously, this plugin has a
considerable performance toll. After disabling the plugin on the site, load times
instantly improved and the responsiveness of the WordPress admin dashboard
improved.

2:13 Use the Free Query Monitor Plugin

You can also use the free Query Monitor WordPress plugin. Use it to identify and
debug slow database queries, AJAX calls, REST API requests, and much more.
In addition, the plugin reports back website details such as script dependencies
and dependents, WordPress hooks that fired during page generation, hosting
environment details, conditional query tags met by the current page, and a lot
more.

The plugin was developed by John Blackbourn, a core WordPress committer and
well-known developer, someone who knows WordPress extensively. Query
Monitor was added to the WordPress plugin directory in 2013 and currently
boasts more than 100,000 active installs – an impressive sum for a development
plugin. The plugin’s user rating of five out of five stars helps explain its popularity
among developers.

Check out our complete tutorial on how to use Query Monitor.

https://wordpress.org/plugins/query-monitor/
https://kinsta.com/blog/admin-ajax/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wptavern.com/query-monitor-a-remarkably-comprehensive-debugging-plugin-for-wordpress
https://kinsta.com/blog/query-monitor/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

2:14 Utilize Staging Sites Without Touching Production

We don’t know what we would do without staging environments. These can be
invaluable when it comes to troubleshooting performance issues. Thankfully,
Kinsta has one-click staging environments. If your WordPress host doesn’t offer
staging environments, you could also use a plugin like WP Staging, although it’s
not as easy.

● Learn more about setting up a staging environment

After you have a staging site up and running, the first thing you can do is disable
all of your plugins. Since this is a copy of your live site, you don’t have to worry
about breaking anything. It’s by far one of the easiest ways to narrow down
issues. Simply go to Plugins, select all of them and choose “Deactivate” from the
bulk options.

After doing this, you can monitor response times in New Relic, our Kinsta APM
tool, or Query Monitor (see above). See what happens after making the change.
In this example below the response times immediately dropped back down to
normal on the site, so we knew it was one of the plugins causing an issue. You

https://kinsta.com/knowledgebase/staging-environment/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wordpress.org/plugins/wp-staging/
https://kinsta.com/blog/wordpress-staging-site/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/disable-wordpress-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/disable-wordpress-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/docs/apm-tool/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/docs/apm-tool/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

can then re-enable them one by one, repeating the same process until you find
the culprit.

Here is an example of what happened when we enabled the plugin that was
causing the problem. Load times (web transaction times) immediately went back
up.

What should you do after you find the plugin causing the slowness? Here is what
we advise:

1. Update your plugins and themes to the latest version if you haven’t
already.

2. Reach out to the developer of the plugin or theme and ask them for
assistance.

3. Find an alternative plugin that can deliver the same functionality.
4. Perhaps your PHP version is causing an issue. Change your PHP engine

to a lower version and see if the plugin or theme then works.
5. You may want help and can hire a WordPress developer to fix the issue.

2:15 Check Your Error Logs

Checking error logs is never fun, but can reveal a lot about performance issues
with WordPress plugins.

If you’re a Kinsta client, you can easily view your error logs, cache logs, and
access logs right from the MyKinsta dashboard.

https://kinsta.com/blog/hire-wordpress-developer/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-error-log/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

You can also enable error logs by adding some code to your wp-config.php file.
First, you will want to connect to your site via SFTP. Then download your
wp-config.php so you can edit it. Note: Always make a backup of this file first!

Find the line that says /* That's all, stop editing! Happy blogging. */ and just
before it, add the following (as seen below):

define('WP_DEBUG', true);

If the above code already exists in your wp-config.php file but is set to “false,”
simply change it to “true.” This will enable debug mode. Note: You will also see
warnings or errors in your WordPress admin if they exist.

You can then enable the debug log to send all errors to a file by adding the
following code just after theWP_DEBUG line (as seen below):

define('WP_DEBUG_LOG', true);

Save your changes and re-upload this to your server. The errors will then get
logged to the debug.log file within your /wp-content/ folder. If for some reason
you don’t see this file, you can always create one.

2:16 Disable Embeds in WordPress

When they released WordPress 4.4, they merged the oEmbed feature into core.
This allows users to embed YouTube videos, tweets and many other resources
on their sites simply by pasting a URL, which WordPress automatically converts
into an embed and provides a live preview in the visual editor. With the update,
WordPress itself became an oEmbed provider.

This feature is useful for a lot of people, and you may want to keep it enabled.
However, what this means is that it also generates an additional HTTP request
on your WordPress site to load the wp-embed.min.js file. And this loads
site-wide. While this file is only 1.7 KB, things like these add up over time. The
request itself is sometimes a bigger deal than the content download size.

https://make.wordpress.org/core/2015/10/28/new-embeds-feature-in-wordpress-4-4/

You can easily disable this file from loading. Here are three different options:

● Option 1 – Disable Embeds with Plugin
● Option 2 – Disable Embeds with Code
● Option 3 – Move the JavaScript Inline

2:17 Disable Emojis in WordPress

Similar to embeds, in WordPress 4.2, they added support for emojis into core for
older browsers. The big issue with this is that it generates an additional HTTP
request on your WordPress site to load the wp-emoji-release.min.js file. And this
loads site-wide. While this file is only 10.5 KB, it’s useless if you’re not using
emojis on your site.

https://kinsta.com/knowledgebase/disable-embeds-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#disable-embeds-plugin
https://kinsta.com/knowledgebase/disable-embeds-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#disable-embeds-code
https://kinsta.com/knowledgebase/disable-embeds-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#inline-embed-js

There are a couple of different ways to disable Emojis in WordPress. You can do
it with a free plugin or with code.

● Disable Emojis with a Plugin
● Disable Emojis with Code

2:18 How to Speed Up WordPress Comments or Disable Them

A busy comment section on a site can cause a lot of performance issues. Just
think about the resources that go into making comments work:

● A database is queried to pull up existing comments.
● Database entries are created for each new comment.
● Comments and comment metadata are received and processed by a

visitor’s browser.
● External resources, such as Gravatars, are requested, downloaded, and

loaded (requiring a separate DNS lookup).
● In many cases, large JavaScript and jQuery resources have to be

downloaded and processed to make the commenting system work the way
it’s supposed to.

https://kinsta.com/knowledgebase/disable-emojis-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#disable-emojis-plugin
https://kinsta.com/knowledgebase/disable-emojis-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#disable-emojis-code

Here are four different options you can do to speed up WordPress comments:

Option 1 – Disable Comments

If your site isn’t getting very many comments and you don’t think they are adding
any value, it might be better to disable comments altogether. Remember,
comments can impact your SEO as Google will typically crawl these as additional
content on the page, so you should only approve high-quality comments.

Option 2 – Optimize Native WordPress Comments

Your second option would be to optimize the native WordPress comment system.
One way would be to reduce the number of comments loaded with the initial
page load.

1. Go to Settings → Discussion in the WordPress admin area.
2. Look for the Other comment settings section.
3. Select the checkbox next to Break comments into pages with and add a

value for the number of comments you want to display with the initial page
load.

Another option you have is to use host Gravatars on your CDN. This is the
approach we take at Kinsta.

By default, when WordPress comments are loaded, every single unique Gravatar
requires an HTTP request. So if a page is loaded up with comments from 50
different commenters, 50 HTTP requests will be required to download all of those

https://kinsta.com/blog/wordpress-comments/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-disable-comments/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Gravatars. As you can imagine, this can impact your page speed. Not to mention
the fact that we’ve seen the external DNS lookup to gravatar.com be slow
sometimes and in some cases even timeout.

If you look at Gravatars on the Kinsta blog, you can see they are loading from
Kinsta.com (including our CDN). Check out how to load gravatars from your
CDN.

Option 3 – Use a Third-Party Comment System

Your third option is to use a third-party comment system. If your site is hosted on
a cheap, resource-starved shared server, then using a third-party commenting
system may speed up pages with lots of comments. It’s the same idea as image
optimization, offloading the work. However, if you’re hosted with Kinsta or another
quality web host, switching to a third-party won’t do much to help your website’s
load speed and may slow it down.

https://woorkup.com/load-gravatars-from-cdn/
https://woorkup.com/load-gravatars-from-cdn/
https://kinsta.com/blog/wordpress-comment-plugins/?utm_source=ebook&utm_content=english
https://kinsta.com/blog/wordpress-comment-plugins/?utm_source=ebook&utm_content=english

Always make sure to speed test the third-party comment system you’re trying.
Take a look at all the separate requests Disqus generates (as shown below).
While most of these requests are loading asynchronously, you’ll still notice some
additional load time if you’re using Disqus.

Option 4 – Lazy Load Comments

Your fourth option is to lazy load comments so that they don’t slow down the
initial page rendering. Here are a couple of plugins you might want to check out:

● Lazy Load for Comments: This plugin allows you to lazy load native
WordPress comments.

● Disqus Conditional Load: If you want to use the Disqus comment system,
this is a must-have plugin to lazy load comments.

2:19 Disable WordPress RSS Feeds

If you’re not using the blogging portion of WordPress on your site, you can
disable the WordPress RSS feeds. While this won’t have a huge impact on
performance, everything helps. It’s also one less thing you have to worry about.

Check out these two different ways to disable RSS feeds in WordPress:

https://kinsta.com/blog/disqus-ads/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://wordpress.org/plugins/lazy-load-for-comments/
https://wordpress.org/plugins/disqus-conditional-load/

● Disable RSS Feed with Plugin
● Disable RSS Feed with Code

2:20 Use MyKinsta Analytics

If you’re a Kinsta client, you can take advantage of the free performance insights
we have built into our MyKinsta Analytics tool. Reports available include:

● Average PHP + MySQL response time
● PHP Throughput
● AJAX Usage
● Top Average PHP + MySQL Response Time
● Top Maximum Upstream Time
● And more…

https://kinsta.com/knowledgebase/wordpress-disable-rss-feed/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-disable-rss-feed/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets#disable-rss-feed-code
https://kinsta.com/knowledgebase/mykinsta-analytics/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

3: Frontend Optimizations
What the user sees on your website is called the frontend or presentation layer. It
is controlled by HTML, CSS, and JavaScript. Fonts and graphics also come into
play here in relation to site speed.

In section 8 of our Site Speed Ebook we explained minification. The steps below
are ways to further optimize how CSS and JS load on your website frontend to
increase speed.

3:1 Eliminate Render-Blocking JavaScript and CSS

A warning about render-blocking JavaScript and CSS might appear when you
have files preventing the page from loading as fast as possible. Specific JS and
CSS are sometimes conditional, meaning they aren’t required to display
above-the-fold content. You can prevent them from becoming render-blocking by
using async and defer attributes.

To eliminate render-blocking JavaScript and CSS you need to do the following:

Clear JS from the Critical Rendering Path

Moving JavaScript out of the critical rendering path is typically done by adding
either the defer or the async attribute to the script HTML elements that call
JavaScript resources.

● The async attribute tells the browser to start downloading the resource
right away without slowing down HTML parsing. Once the resource is
available, HTML parsing is paused so the resource can be loaded.

● The defer attribute tells the browser to hold off on downloading the
resource until HTML parsing is complete. Once the browser has finished

https://kinsta.com/ebooks/wordpress/speed-up-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

with the HTML it will then download and render all deferred scripts in the
order in which they appear in the document.

Optimize Delivery of CSS Resources

Optimizing the delivery of CSS essentially means you need to figure out how to
make it non-render blocking.

● Identify the styles that are required to render above-the-fold content and
deliver those styles inline with the HTML

● Use CSS conditionally on devices only when needed
● Load remaining CSS asynchronously

Doing all of the above can sometimes be a tricky process and definitely takes
some tweaking based on the scripts you have loading on your site. Here are a
couple of WordPress plugins that can help:

● Autoptimize (free)
● Async JavaScript (free)
● Hummingbird (free)

For a more detailed explanation and walk through, we recommend checking out
our post on eliminating render-blocking JavaScript and CSS.

3:2 Combine External CSS and JavaScript in WordPress

The ‘combine external CSS’ warning is typically seen when using a CDN
because you are hosting your CSS files on an external domain, such as
cdn.domain.com. In the past, a quick way to fix this was to concatenate your
CSS files, or combine them so that they are loading in a single request.

But that doesn’t necessarily mean this optimization is completely dead. In some
instances, we have seen this still speed up WordPress sites. It depends on the
size of the files and how many of them there are. Therefore, this is one
optimization we recommend you still test on your site.

https://wordpress.org/plugins/autoptimize/
https://wordpress.org/plugins/async-javascript/
https://wordpress.org/plugins/hummingbird-performance/
https://kinsta.com/blog/eliminate-render-blocking-javascript-css/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

One of the easiest ways to combine your external CSS and JavaScript files is
with the free Autoptimize plugin. After combining them, you will see a
“autoptimize_xxxxx.css” or “autoptimize_xxxxx.js” file. It also supports loading
them from your CDN. You can also do this with the WP Rocket plugin.

Check out our in-depth post on how to combine external CSS and JavaScript in
WordPress.

3:3 Lazy Loading

If you have a lot of images, you might consider lazy loading them. This is an
optimization technique that loads visible content but delays the downloading and
rendering of content that appears below the fold.

Check out our guide on how to implement lazy loading in WordPress. This can be
especially important on blog posts with lots of gravatar icons from comments.
Google also just released their recommendations for lazy loading.

3:4 Additional Image Optimization Tips

Here are a few final image optimization tips to walk away with.

The days of uploading images only sized to the width of the column or DIV are
over. Responsive images work out of the box in WordPress (since version 4.4)
and will automatically display smaller image sizes to mobile users.

https://wordpress.org/plugins/autoptimize/
https://wp-rocket.me/
https://kinsta.com/knowledgebase/combine-external-css/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/combine-external-css/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/wordpress-lazy-load/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Format: Simple Vector Graphic (SVG)

SVGs can be another awesome alternative to using images. Many of the
hand-drawn illustrations you see around the Kinsta website are SVGs (vectors).
SVGs are typically a lot smaller in file size, although not always.

● Check out our tutorial on how to use SVGs on your WordPress site.

Format: Web Picture Format (WebP)

WebP is a newer image format created by Google. WebP files are often 25-35%
smaller than JPEGs, but look just as good. One issue with this format, that is
getting better over time, is that not all browsers fully support the format yet.

● Learn how to use WebP and more about browser support

Use Icon Fonts

Consider using icon fonts instead of placing text within images – they look better
when scaled and take less space. And if you use a font generator, you can
optimize them even more. Check out how we decreased the size of our icon
fonts file by a whopping 97.59% using a font generator.

3:5 Mobile Optimizations

Google began rolling out its mobile-first index on March 26th, 2018. Previously
Google’s crawling, indexing, and ranking systems have used the desktop version
of websites. Mobile-first indexing means that Googlebot will now use the mobile
version of your WordPress site for indexing and ranking. This helps improve the
search experience for mobile users.

When it comes to optimizing your site for mobile-first, speed is one of the most
important factors to focus on. Speed plays a major role in everything from
usability to bounce rates and determining whether or not potential buyers will
return to your site. In fact, speed is now a landing page factor for Google Search
and Ads for mobile searches.

https://kinsta.com/blog/what-is-an-svg-file/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/webp/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/wordpress-icon-fonts/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/google-mobile-first-index/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://developers.google.com/web/updates/2018/07/search-ads-speed

Bad mobile experiences will lead the majority of users to never return. According
to the latest Google page speed report, the average time a mobile site took to
load in 2018 was 15 seconds. Can you imagine waiting that long to load a single
page? Astounding.

Users demand (and deserve) better. According to the same page speed report,
53% of mobile site visitors leave pages that take longer than a measly three
seconds to load.

Slow mobile experiences aren’t killing conversions. They’re preventing you from
even getting a chance to convert prospects. As page load times increase by just
a few seconds, the likelihood of someone bouncing climbs exponentially. Here
are a few things to consider when optimizing for mobile.

Check Out Your Mobile Traffic

It’s always important to take a look at how much mobile traffic you’re getting, as
this might shift your priorities a bit. You can see how many mobile devices are
visiting your site in Google Analytics under “User → Tech → Overview.” Look for
the “Users by Platform / device category” section.

https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/

If you’re a Kinsta client, you can also check out your mobile vs. desktop traffic in
MyKinsta Analytics. As you can see on this site, over 88% of the traffic is from
the desktop. It’s always important to check and not just assume. Just because
everyone says things are going mobile, doesn’t always mean it is for your site.
Look at the data.

Make Sure Your Site is Responsive

For many websites and businesses, more people visit your site with mobile
devices (smartphones) than desktop devices (laptops and computers). So make
sure you work on mobile! This means it utilizes media queries to scale things
down automatically on mobile devices. If you still haven’t done this, you’re far
behind your competition. All of the WordPress themes we mentioned earlier in
this post are fully responsive and look awesome on all devices.

Use Google’s Mobile-Friendly tool to test and ensure that your website passes all
the requirements.

Double Check to Make Sure srcset is Working

In the past, it was very important that you upload images to scale and not let
CSS resize them. However, this is no longer as important since WordPress 4.4
now supports responsive images (not scaled down by CSS). WordPress
automatically creates several sizes of each image uploaded to the media library.

https://search.google.com/test/mobile-friendly
https://make.wordpress.org/core/2015/11/10/responsive-images-in-wordpress-4-4/

By including the available sizes of an image into a srcset attribute, browsers can
now choose to download the most appropriate size and ignore the others. See an
example of what your code looks like below.

Due to all the third-party image plugins and customizations out there, there have
been a lot of times where we’ve seen this not working correctly. Therefore, it’s
important to double check that your images are properly getting the srcset
attribute added with different versions for different screen sizes. Image
optimization is now important forever.

3:6 Disable Scripts on a Per Page/Post Basis

Another very powerful way to speed up WordPress is to dig through each request
that is loading on your pages and posts. You’ll most likely end up finding scripts
that are loading site-wide that shouldn’t be.

You can use a premium plugin like Perfmatters which has a “Script Manager”
feature built-in. This allows you to disable scripts (CSS and JavaScript) on a per
page/post basis, or even site-wide with a single click. Again, this plugin is
developed by a team member at Kinsta.

A few examples of what this can be used for:

● The popular Contact Form 7 plugin loads itself on every page and post.
You can easily disable it everywhere with one click and enable only on
your contact page.

● Social media sharing plugins should only be loaded on your posts. You can
easily disable it everywhere and load only on post types, or even custom
post types.

● The Table of contents plugin (TOC) loads on every page and post. With the
scripts manager, you can easily control where you want it loading.

● If you’ve upgraded to WordPress 5.0 and aren’t using the Gutenberg block
editor, perhaps you’re still using the classic editor or another third-party
editor, there are two additional front-end scripts that are added site-wide
which you can disable: /wp-includes/css/dist/block-library/style.min.css and
/wp-includes/css/dist/block-library/theme.min.css.

Why Are Some Plugins Coded This Way?

You might be wondering why all plugin developers don’t just load their scripts
only when the plugin is detected on the page? Well, it is a little more complicated
than that. For example, if you have a plugin like Contact Form 7, it also has
shortcodes which allow you to place it anywhere. This includes dropping it in a
widget. With WordPress, it is much harder to query data from them when you
dequeue scripts as opposed to querying data from the post or page metadata.

Therefore, a lot of times this is due to usability issues. The less chance they have
for a plugin to break, the fewer tickets and support they will have. However, with
a lot of plugins on the marketplace, there are ways to get around this and code
for performance if they wanted to. Unfortunately, sometimes the sheer number of
downloads and users makes coding for usability a priority.

Touring the Script Manager

We’ll give you a little tour of the Script Manager. After clicking it in your toolbar
you will be presented with all the scripts loading on that current URL, both
JavaScript and CSS files. You then have the following options:

1. Status On (default setting)
2. Status Off: Disable Everywhere (you can then choose which posts types

you want it enabled on, along with the current URL)
3. Status Off: Disable only on current URL (this is very useful for using on

your homepage)
4. Status Off: Exceptions (current URL, post type, or archive)

Everything is grouped together by the plugin or theme name. This makes it
super easy to disable an entire plugin at once. Typically a WordPress plugin will
have both a JavaScript and CSS file. A WordPress theme might have 10+ files.
The Script Manager even supports regex for when you have a more complicated
URL structure or installation.

After you select and or modify the settings, make sure to hit “Save” at the bottom.
You can then test in a website speed tool to ensure the scripts are no longer
loading on the page or post. Make sure to clear your cache first! And if anything
goes wrong on your site visually, you can always re-enable it in the settings to
return to normal.

In a speed test we were able to decrease the total load times by 20.2%. On
their homepage alone they were able to reduce the number of HTTP requests
from 46 down to 30. Their page size also shrunk from 506.3 KB to 451.6 KB.

For other ways to disable scripts, check out our blog post on how to disable
WordPress plugins from loading.

3:7 Analyzing Third-Party Performance

Basically, anything you call externally from your site has load time consequences.
What makes this problem even worse is that some of them are only slow
intermittently, making identification of the issue even more difficult.

A third-party external service could be considered anything that communicates
with your WordPress site from outside your own server. Here are a few common
examples we encounter on a regular basis:

● Social media platforms like Twitter, Facebook, and Instagram (widgets or
conversion pixels)

● 3rd-party advertising networks like Google Adsense, Media.net,
BuySellAds, Amazon Associates

● Website analytics and tracking scripts like Google Analytics, Crazy Egg,
Hotjar, AdRoll

● A/B testing tools such as Optimizely, VWO, Unbounce
● WordPress comment systems such as Disqus, Jetpack, Facebook

comments
● Backup and security tools such as VaultPress, Sucuri, CodeGuard
● Social sharing tools such as SumoMe, HelloBar
● CDN networks like KeyCDN, Amazon CloudFront, CDN77, and StackPath
● Externally hosted Javascript

How much do some of these third-party trackers impact performance? In our own
case study, we saw that third-party scripts increased the page load times by
86.08%.

You have to be very careful on your WordPress site. Just one bad third-party API
call could timeout your entire site! Yes, it shouldn’t work that way, but in a lot of
cases, it does. We’ve seen it more times than we can count.

https://kinsta.com/blog/disable-wordpress-plugins-loading/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/disable-wordpress-plugins-loading/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-widgets/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/add-google-analytics-to-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/wordpress-comment-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/wordpress-security-plugins/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/wordpress-cdn/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/third-party-performance/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

It’s important that whenever you add a new feature or plugin to your site that you
investigate the external resources loading from it. The less the better!

● Read this article about using an Application Performance Monitoring (APM)
tool to analyze site performance

https://kinsta.com/blog/application-performance-monitoring/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

Appendix: Your Site Could Be Slow Because It’s Been Quietly
Hacked

If you’re having trouble tracking down a performance issue, it could very well be
that your site is hacked, infected with malware, or undergoing a DDoS attack.
This can impact your site’s speed and even the responsiveness of your
WordPress admin dashboard. In these cases we recommend the following:

1. Implement a proxy server and WAF such as Cloudflare or Sucuri.
2. Block bad IP addresses using the services above (or if you’re a Kinsta

client you can easily block IP addresses from your MyKinsta dashboard).
3. You can also implement geo-blocking. Some countries are really bad when

it comes to the quality of the traffic they generate. If you’re under attack,
you might need to block the entire country, either temporarily or
permanently. Ask your web host if and how you can implement this on your
site (here’s how it works on Kinsta).

Troubleshooting with Error Codes (HTTP Status Codes)

HTTP status codes are like a short note from the web server that gets tacked
onto the top of a web page. It’s not part of the web page. Instead, it’s a message
from the server letting you know how things went when the request to view the
page was received by the server. These can be invaluable when it comes to
troubleshooting!

While there are over 40 different status codes, below are the common ones we
see WordPress users struggling with.

429: “Too many requests.” Generated by the server when the user has sent too
many requests in a given amount of time (rate limiting). This can sometimes
occur from bots or scripts attempting to access your site. In this case, you might
want to try changing your WordPress login URL.

https://kinsta.com/blog/ddos-attack?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/block-ip-address/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/geoip-wordpress/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/http-status-codes/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/knowledgebase/wordpress-login-url/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

500: “There was an error on the server and the request could not be
completed.” A generic code that simply means “internal server error”.
Something went wrong on the server, and the requested resource was not
delivered. This code is typically generated by third-party plugins, faulty PHP, or
even the connection to the database breaking. Check out our tutorials on how to
fix the error establishing a database connection and other ways to resolve a 500
internal server error.

502: “Bad Gateway.” This error code typically means that one server has
received an invalid response from another. Sometimes a query or request will
take too long, and so it is canceled or killed by the server and the connection to
the database breaks. Check out our in-depth tutorial on how to fix the 502 Bad
Gateway error.

https://kinsta.com/blog/error-establishing-a-database-connection/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/500-internal-server-error/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/500-internal-server-error/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/502-bad-gateway/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/blog/502-bad-gateway/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

503: “The server is unavailable to handle this request right now.” The
request cannot be completed right now. This code may be returned by an
overloaded server that is unable to handle additional requests.

504: “The server, acting as a gateway, timed out waiting for another server
to respond.” The code returns when there are two servers involved in
processing a request, and the first server times out waiting for the second server
to respond. Read more about how to fix 504 errors.

https://kinsta.com/blog/504-gateway-timeout/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

You can also dig into these HTTP response codes in our MyKinsta Analytics tool.
Our response code breakdown report lets you see an overview of the distribution
of HTTP status codes served for the requested resources.

The response stats report lets you see the total number of redirects happening,
errors, success rate, and error ratio. Every WordPress site will typically have a
small error rate ratio; this is completely normal. If it’s above one percent, look into
why.

There are then breakdown reports for each type of error code, such as 500
errors, 400 errors, redirects, etc.

Conclusion

Thanks for checking out our Site Speed White Paper. As you can probably tell,
we are obsessed with all the different ways you can speed up WordPress sites.

We hope these tips, how-tos, and explanations help you get your site running at
peak speed.

● Be sure to bookmark our Website Speed resource page where we list
new resources related to speed and performance each month.

● Get help from our experts! Get a FREE performance audit and get a
second opinion on your website’s speed and performance.

● Make your life easier with our Managed WordPress Hosting. You can focus
on growing your business and we’ll handle making your site run fast. We
include and manage most of the optimizations described in this White
Paper with each of our plans. Migrate for free and see how fast your site
runs. It’s risk free with a 30-day money back guarantee.

Kinsta was founded in 2013 with a desire to change the status quo. We set
out to create the best hosting platform in the world and that’s our mission.

We started with managed WordPress Hosting, added Application Hosting
and Database Hosting, and are constantly evolving to offer industry-leading
tools and services for the modern developer. We’re committed to the best
experience for developers and businesses, building for performance and
ease of use.

Join the growing club of 26500 companies that switched to better, faster
hosting.

https://kinsta.com/topic/website-speed/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/performance-audits/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/wordpress-migration/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/wordpress-hosting/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/application-hosting/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets
https://kinsta.com/database-hosting/?utm_medium=whitepaper&utm_source=site-speed&utm_campaign=gated-assets

